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performance was to combine the double-
match criterion with making k-mers as long 
as possible, which required finding similar 
and not just exact k-mers. This effectively 
bases our decision on up to 2 × 7 = 14 
residues instead of just 2 × 3 in BLAST or 12 
letters on a size-11 alphabet in DIAMOND.

MMseqs2 is parallelized on three levels: 
time-critical parts are manually vectorized, 
queries can be distributed to multiple cores, 
and the target database can be split into 
chunks distributed to multiple servers. 
Because MMseqs2 needs no random memory 
access in its innermost loop, its runtime 
scales almost inversely with the number of 
cores used (Supplementary Fig. 2).

MMseqs2 requires 13.4 GB plus 7 bytes per 
amino acid to store the database in memory, 

MMseqs2 enables sensitive protein sequence 
searching for the analysis of massive data sets
To the Editor: The throughput of DNA 
sequencing has increased much faster than 
computational speed in the past decade,  and 
sensitive-sequence searching has become 
the main bottleneck in the analysis of 
large metagenomic data sets. We therefore 
developed MMseqs2 (https://github.com/
soedinglab/mmseqs2), which improves 
on current search tools over the full range 
of speed-sensitivity trade-off, achieving 
sensitivities better than PSI-BLAST at more 
than 400 times its speed.

As a result of the drop in sequencing costs 
by four orders of magnitude since 2007, 
many large-scale metagenomic projects are 
being performed, each producing terabytes 
of sequences with applications in medical, 
biotechnological, microbiological, and 
agricultural research1–4. A central step in 
the computational analysis is the annotation 
of open reading frames by searching for 
similar sequences in the databases from 
which to infer function. In metagenomics, 
computational costs now dominate 
sequencing costs5–7, and protein searches 
typically consume >90% of computational 
resources7, even though the sensitive but 
slow BLAST8 has mostly been replaced by 
much faster search tools9–12. But the gains 
in speed come at the expense of lower 
sensitivity. Because many species found in 
metagenomics and metatranscriptomics 
studies are not closely related to any 
organism with a well-annotated genome, the 
fraction of unannotatable sequences is often 
as high as 65–90%2,13, and the widening gap 
between sequencing and computational costs 
quickly aggravates this problem.

To address this challenge, we developed 
MMseqs2, a parallelized, open-source 
software suite. Compared to its predecessor 
MMseqs14, it is much more sensitive, 
supports iterative profile-to-sequence 
and sequence-to-profile searches, and 
offers much enhanced functionality 
(Supplementary Table 1).

MMseqs2 searching is composed 
of three stages (Fig. 1a): a short word 
(‘k-mer’) match stage, vectorized ungapped 
alignment, and gapped (Smith–Waterman) 
alignment. The first stage is crucial for the 
improved performance. For a given query 
sequence, it finds all target sequences that 
have two consecutive similar-k-mer matches 
on the same diagonal (Fig. 1b). Consecutive 
k-mer matches often lie on the same 

diagonal for homologous sequences (if no 
alignment gap occurs between them) but are 
unlikely to do so by chance. Whereas most 
fast tools detect only exact k-mer matches9–12, 
MMseqs2, like MMseqs and BLAST, finds 
k-mer matches between similar k-mers. This 
similar-k-mer matching allows MMseqs2 
to use a large word size k = 7 without losing 
sensitivity, by generating a large number of 
similar k-mers, ~600 to 60,000 per query 
k-mer, depending on the similarity setting 
(Fig. 1b, orange frame). For MMseqs2’s 
speed it was crucial to have found a way 
(explained in Supplementary Fig. 1 and the 
Supplementary Methods) to eliminate the 
random memory access in the last line of the 
innermost loop 4 (magenta frame). 

The critical insight for the prefilter 

Figure 1  MMseqs2 searching in a nutshell. (a) Three increasingly sensitive search stages find similar 
sequences in the target database. (b) The short word (k-mer) match stage detects consecutive similar-k-
mer matches occurring on the same diagonal. The diagonal of a k-mer match is the difference between 
the positions of the two similar k-mers in the query and in the target sequence. The pre-computed 
index table for the target database (blue frame) contains for each possible k-mer the list of the target 
sequences and positions where the k-mer occurs (green frame). Query sequences/profiles are processed 
one by one (loop 1). For each overlapping spaced query k-mer (loop 2), a list of all similar k-mers is 
generated (orange frame). The similarity threshold determines the list length and sets the trade-off 
between speed and sensitivity. For each similar k-mer (loop 3) we look up the list of sequences and 
positions where it occurs (green frame). In loop 4 we detect consecutive double matches on the same 
diagonals (magenta and black frames). For details, see Supplementary Methods.
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sequence data sets, and includes many utility 
scripts. We illustrate its power with three 
application examples.

In the first example, we tested MMseqs2 
for annotating proteins in the Ocean 
Microbiome Reference Gene Catalog (OM-
RGC)1. The speed and quality bottleneck 
is the search through the eggNOGv3 
database20. The BLAST search with E-value 
cutoff 0.01 produced matches for 67% of 
the 40.2 M OM-RGC genes1. We replaced 
BLAST with three MMseqs2 searches of 
increasing sensitivity (Supplementary Fig. 
11). The first MMseqs2 search in fast mode 
detected matches for 59.3% of genes at E ≤ 
0.1. (E ≤ 0.1 corresponds to the same false-
discovery rate as E ≤ 0.01 in BLAST, Fig. 
2d). The sequences without matches were 
searched with default sensitivity, and 17.5% 
had a significant match. The last search in 
sensitive search mode found matches for 
8.3% of the remaining sequences. In total, 
we obtained at least one match for 69% 
of sequences in OM-RGC, 3% more than 
BLAST in 1% of the time (1,520 vs. 162,952 
CPU hours; Shini Sunagawa, personal 
communication).

or 80 GB for 30.3 M sequences of length 342. 
Large databases can be searched with limited 
main memory by splitting the database 
among servers, at very moderate loss of speed 
(Supplementary Fig. 3).

We developed a benchmark with full-
length sequences containing disordered, low-
complexity and repeat regions, because these 
regions are known to cause false-positive 
matches, particularly in iterative profile 
searches. We annotated UniProt sequences 
with structural domain annotations from 
SCOP15, 6,370 of which were designated 
as query sequences and 3.4 M as database 
sequences. We also added 27 M reversed 
UniProt sequences, thereby preserving low 
complexity and repeat structure16. The 
unmatched parts of query sequences were 
scrambled in a way that conserved the local 
amino acid composition. A benchmark 
using only unscrambled sequences gave 
similar results (Supplementary Figs. 4–7). 
We defined true-positive matches to have 
annotated SCOP domains from the same 
SCOP family; false positives match a reversed 
sequence or a sequence with a SCOP domain 
from a different fold. Other cases are ignored.

Figure 2a shows the cumulative distribution 
of search sensitivities. Sensitivity for a single 
search is measured by the area under the 
curve (AUC) before the first false-positive 
match, that is, the fraction of true-positive 
matches found with better E-value than 
the first false-positive match. MMseqs2 in 
sensitive mode (MMseqs2-sens) reaches 
BLAST’s sensitivity while being 36 times faster. 
MMseqs2 is as sensitive as the exact Smith–
Waterman aligner SWIPE17, compensating 
some unavoidable loss of sensitivity due to its 
heuristic prefilters by effectively suppressing 
false-positive matches between locally biased 
segments (Fig. 2d and Supplementary Fig. 
4). This is achieved by correcting the scores of 
regions with biased amino acid composition 
or repeats, masking such regions in the 
k-mer index using TANTAN18, and reducing 
homologous overextension of alignments19 
with a small negative-score offset (Fig. 2d 
and Supplementary Fig. 7). All tools except 
MMseqs2 and LAST have reported far too 
optimistic E-values (Supplementary Fig. 8). 
For example, in 6,370 searches DIAMOND 
reported 69,211 false-positive matches with 
E-values below 10–3 (versus 0.637 expected) 
in 5% of the searches (versus 0.1% expected), 
while MMseqs2 produced 54 false-positive 
matches in only 0.1% of the searches 
(Supplementary Table 2). In automatic 
functional annotation pipelines, such 
unreliable E-values will lead to an increased 
fraction of false annotations.

In a comparison of AUC sensitivity and 
speed (Fig. 2b), MMseqs2 with four sensitivity 
settings (red) showed the best combination of 
speed and sensitivity over the entire range of 
sensitivities. Similar results were obtained with 
a benchmark using unscrambled or single-
domain query sequences (Supplementary 
Figs. 4–7, 9 and 10).

Searches with sequence profiles are 
generally much more sensitive than simple 
sequence searches, because profiles contain 
detailed, family-specific preferences for each 
amino acid at each position. We compared 
MMseqs2 to PSI-BLAST (Fig. 2b,c) using 
two to four iterations of profile searches 
through the target database. As expected, 
MMseqs2 profile searches were much faster 
and more sensitive than BLAST sequence 
searches. But MMseqs2 was also considerably 
more sensitive than PSI-BLAST, despite being 
433 times faster at three iterations. This is 
partly due to its effective suppression of high-
scoring false positives and more accurate 
E-values (Fig. 2d and Supplementary Fig. 7).

The MMseqs2 suite offers workflows for 
various standard-use cases of sequence and 
profile searching and clustering of huge 

Figure 2  MMseqs2 pushes the boundaries of sensitivity-speed trade-off. (a) Cumulative distribution 
of AUC sensitivity for all 6,370 searches with UniProt sequences through the database of 30.4 M full-
length sequences. Higher curves signify higher sensitivity. Legend: speed-up factors relative to BLAST, 
measured on a 2 × 8 core 128 GB RAM server using a 100 times duplicated query set (637,000 
sequences). Times to index the database have not been included. MMseqs2 indexing takes 7.1 min 
for 30.3 M sequences of avg. length 342. (b) Average AUC sensitivity versus speed-up factor relative 
to BLAST. White numbers in plot symbols: number of search iterations. (c) Same analysis as in a, for 
iterative profile searches. (d) False-discovery rates for sequence and profile searches. Colors: as in a 
(top) and c (bottom). The command line parameters of all tools are listed in Supplementary Table 3.
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In the second example, we sought to 
annotate the remaining 12.3 M unannotated 
sequences using profile searches. We merged 
the UniProt database with the OM-RGC 
sequences and clustered this set with 
MMseqs2 at 50% sequence identity cut-off. 
We built a sequence profile for each remaining 
OM-RGC sequence by searching through this 
clustered database and accepting all matches 
with E ≤ 0.001. With the resulting sequence 
profiles, we searched through eggNOG, 
and obtained at least one match for 3.5 M 
(28.3%) profiles with E < 0.1 . This increased 
the fraction of OM-RGC sequences with 
significant eggNOG matches to 78% with an 
additional CPU time of 900 h. In summary, 
MMseqs2 matched 78% of sequences to 
eggNOG in only 1.5% of the CPU time that 
BLAST needed to find matches for 67% of the 
OM-RGC sequences1.

In the third example, we annotated a non-
redundant set of 1.1 billion hypothetical 
protein sequences with Pfam21 domains. 
We predicted these sequences with an 
average length of 134 amino acids in ~2,200 
metagenome and metatranscriptome data 
sets22. We searched with each sequence 
through the 16,479 Pfam31.0 sequence 
profiles held in 16 GB of memory of a single 
2× 14-core server using sensitivity setting 
-s 5. Supplementary Figure 12 explains the 
adaptations to the k-mer prefilter and search 
workflow. The entire search took 8.3 h, or 
0.76 ms per query sequence per core and 
resulted in 370 M domain annotations with 
E-values < 0.001. A search of 1,100 randomly 
sampled sequences from the same set with 
HMMER3 (ref. 23) through Pfam took 10.6 
s per sequence per core, almost 14,000 times 
longer, and resulted in 514 annotations with 
E < 0.001, in comparison to 415 annotations 
found by MMseq2. A sensitivity setting 
of -s 7 brings the number of MMseqs2 

annotations to 474 at 4,000 times the speed 
of HMMER3.

In summary, MMseqs2 closes the cost and 
performance gap between sequencing and 
computational analysis of protein sequences. Its 
sizeable gains in speed and sensitivity should 
facilitate the analysis of large data sets and even 
the entire genomic and metagenomic protein 
sequence space at once. MMseqs2 source 
code is available in Supplementary Source 
Code and at mmseqs.org and at https://doi.
org/10.5281/zenodo.839602. A compressed tar 
file containing all databases, evaluation tools, 
tested method binaries (excluding UBLAST), 
and benchmark scripts is available at http://
wwwuser.gwdg.de/~compbiol/mmseqs2/
mmseqs2-benchmark.tar.gz. 

Editor’s note: This article has been peer-reviewed.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper 
(http://dx.doi.org/10.1038/nbt.3988).
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