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Omics 
= large-scale study of all molecules in a biological 

sample/system (e.g. genomics, proteomics, 

metabolomics) to describe their composition, 

functions, dynamics, and interactions (e.g. functional 

genomics, connectomics, interactomics).
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Omics
+

Data mining

= field that attempts to computationally discover 
patterns in large data sets

Omics
+

Data mining

www.sparkpeople.com
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We’re going to first learn 
about clustering algorithms 

& classifiers

Clustering = task of grouping a set of objects in such a 
way that objects in the same group (a cluster) are more 

similar (in some sense) to each other than to those in 

other groups (clusters).

Adapted from Wikipedia

We’re going to first learn 
about clustering algorithms 

& classifiers
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Classification = task of categorizing a new observation, 
on the basis of a training set of data with observations 

(or instances) whose categories are known

Adapted from Wikipedia

We’re going to first learn 
about clustering algorithms 

& classifiers

Nature 2000

Let’s motivate this with an important 
historical example:
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Nature 2000

“Diffuse large B-cell lymphoma (DLBCL), the most
common subtype of non-Hodgkin's lymphoma … is

one disease in which attempts to define subgroups on

the basis of morphology have largely failed…”

“DLBCL … is clinically heterogeneous:
40% of patients respond well to current therapy and

have prolonged survival, whereas the remainder

succumb to the disease.

We proposed that this variability in natural history
reflects unrecognized molecular heterogeneity in the

tumours.”

Blast from the past:  Profiling mRNA 
expression with DNA microarrays

DNA molecules are attached to 

a solid substrate, then…

…probed with a labeled (usually 

fluorescent) DNA sequence

Wikipedia
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Wikipedia

Blast from the past:  Profiling mRNA 
expression with DNA microarrays

(FYI, we would generally now 

just sequence the cDNA)

Wikipedia

Wikipedia

Note that some 

arrays are 1-color, 
some are 2. Why?

Blast from the past:  Profiling mRNA 
expression with DNA microarrays
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DNA microarrays

RNA sequencing

DNA microarrays are a great example of
the “arc” of a technology over time

Worldwide Google trends, 2004-present

Nature 2000

96 patient biopsies
(normal and malignant lymphocyte samples)

Extract mRNA from each sample

Perform DNA microarray experiment on each to 
measure mRNA abundances (~1.8 million total gene 

expression measurements)

Cluster samples by their expression patterns

Back to diffuse large B-cell lymphoma… 
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Hierarchical 
clustering of 

the gene 
expression 

data 

Red = high expression

Green = low

(yes, I know it’s exactly

backwards from what 
you might expect.)

Nature 2000

G
e

n
e

s

Samples

Genes can be 
found whose 
expression is 

specific to 
germinal 

centre B cells, 
and different 

across DLBCL’s

Nature 2000
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We can break up the DLBCL’s according the 
germinal B-cell specific gene expression:

Nature 2000

What good is this?  These molecular 
phenotypes predict clinical survival.

Kaplan-Meier plot 
of patient survival

Nature 2000
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What good is this?  These molecular 
phenotypes predict clinical survival.

Grouping patients by clinical prognostic index Regrouping low risk patients by gene expression

Nature 2000

Gene expression, and other molecular 
measurements, provide far deeper 
phenotypes for cells, tissues, and 

organisms than traditional measurements

These sorts of observations have now 
motivated tons of work using these 

approaches to diagnose specific forms of 
disease, as well as to discover functions of 

genes and many other applications
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So, how does clustering work?

First, let’s think about the data, e.g. as for gene expression.

From one sample, using DNA microarrays or RNA-seq, we get:

N
g

e
n

e
s

Expression level of gene 1

Expression level of gene 2
Expression level of gene 3

.

.

.

Expression level of gene i
.

.

.
Expression level of gene N

For yeast, N ~ 6,000

For human, N ~ 22,000

i.e., a vector of 
N numbers

So, how does clustering work?

Every additional sample adds another column, giving us a matrix 

of data:

N
g

e
n

e
s

Gene 1, sample 1     …

Gene 2, sample 1     …
Gene 3, sample 1     …

.

.

.

Gene i, sample 1      …
.

.

. 
Gene N, sample 1     …

For yeast, N ~ 6,000

For human, N ~ 22,000

M samples

Gene 1, sample j …

Gene 2, sample j       …
Gene 3, sample j …

.

.

.

Gene i, sample j …
.

.

.
Gene N, sample j …

Gene 1, sample M

Gene 2, sample M
Gene 3, sample M 

.

.

.

Gene i, sample M
.

.

.
Gene N, sample M

i.e., a matrix of N
x M numbers
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So, how does clustering work?

N
g

e
n

e
s

Gene 1, sample 1     …

Gene 2, sample 1     …
Gene 3, sample 1     …

.

.

.

Gene i, sample 1      …
.

.

. 
Gene N, sample 1     …

M samples

Gene 1, sample j …

Gene 2, sample j       …
Gene 3, sample j …

.

.

.

Gene i, sample j …
.

.

.
Gene N, sample j …

Gene 1, sample M

Gene 2, sample M
Gene 3, sample M 

.

.

.

Gene i, sample M
.

.

.
Gene N, sample M

Every gene has a feature vector

of M numbers associated with it

So, how does clustering work?

N
g

e
n

e
s

Gene 1, sample 1     …

Gene 2, sample 1     …
Gene 3, sample 1     …

.

.

.

Gene i, sample 1      …
.

.

. 
Gene N, sample 1     …

M samples

Gene 1, sample j …

Gene 2, sample j       …
Gene 3, sample j …

.

.

.

Gene i, sample j …
.

.

.
Gene N, sample j …

Gene 1, sample M

Gene 2, sample M
Gene 3, sample M 

.

.

.

Gene i, sample M
.

.

.
Gene N, sample M

Similarly, every 

sample has a feature 

vector of N numbers 

associated with it
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So, how does clustering work?

N
g

e
n

e
s

Gene 1, sample 1     …

Gene 2, sample 1     …
Gene 3, sample 1     …

.

.

.

Gene i, sample 1      …
.

.

. 
Gene N, sample 1     …

M samples

Gene 1, sample j …

Gene 2, sample j       …
Gene 3, sample j …

.

.

.

Gene i, sample j …
.

.

.
Gene N, sample j …

Gene 1, sample M

Gene 2, sample M
Gene 3, sample M 

.

.

.

Gene i, sample M
.

.

.
Gene N, sample M

The first clustering method we’ll learn 
about simply groups the objects

(samples or genes) in a hierarchy by the 

similarity of their feature vectors.

A hierarchical clustering algorithm

Start with each object in its own cluster

Until there is only one cluster left, repeat:
Among the current clusters, find the two 

most similar clusters

Merge those two clusters into one 

We can choose our measure of similarity 
and how we merge the clusters
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Hierarchical clustering

Data points on an X-Y plane Dendrogram

(grouped by closeness) 

Conceptually

Wikipedia

Wikipedia

We’ll need to measure the similarity 
between feature vectors. Here are a few 
(of many) common distance measures 

used in clustering.
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A nice graphical view of them:

9 Distance Measures in Data Science: The advantages and pitfalls of common distance measures, by Maarten Grootendorst

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Back to the
B cell 

lymphoma 
example

Nature 2000

G
e

n
e

s

Samples

Hierarchical clustering

Similarity measure = Pearson correlation 
coefficient between gene expression vectors

Similarity between clusters = average similarity 
between individual elements of each cluster 

(also called average linkage clustering)
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K-means clustering is a common 
alternative clustering approach

*mainly because it’s easy and can be quite fast!*

The basic algorithm:
1. Pick a number (k) of cluster centers

2. Assign each gene to its nearest cluster center
3. Move each cluster center to the mean of its

assigned genes

4. Repeat steps 2 & 3 until convergence

See the K-means example posted on the web site

Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example
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Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: hierarchical

Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: k-means
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Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: k-means

Decision boundaries

Some features of K-means clustering

• Depending on how you seed the clusters, it may 
be stochastic. You may not get the same answer 

every time you run it.
• Every data point ends up in exactly 1 cluster

(so-called hard clustering)

• Not necessarily obvious how to choose k
• Great example of something we’ve seen already: 

Expectation-Maximization (E-M) algorithms

EM algorithms alternate between assigning data to 

models (here, assigning points to clusters) and 
updating the models (calculating new centroids)
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Some features of K-means clustering

• Depending on how you seed the clusters, it may 
be stochastic. You may not get the same answer 

every time you run it.
• Every data point ends up in exactly 1 cluster

(so-called hard clustering)

• Not necessarily obvious how to choose k
• Great example of something we’ll meet again: 

Expectation-Maximization (E-M) algorithms

EM algorithms alternate between assigning data to 

models (here, assigning points to clusters) and 
updating the models (calculating new centroids)

Let’s think about this aspect for a minute. 
Why is this good or bad?
How could we change it?

The basic algorithm:
1. Pick a number (k) of cluster centers

2. Assign each gene to its nearest cluster center
3. Move each cluster center to the mean of its

assigned genes

4. Repeat steps 2 & 3 until convergence

k-means
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Fuzzy k-means

The basic algorithm:
1. Choose k.  Randomly assign cluster centers.

2. Fractionally assign each gene to each cluster:
e.g. occupancy (gi,mj) = e

3. For each cluster, calculate weighted mean of 
genes to update cluster centroid

4. Repeat steps 2 & 3 until convergence

-||gi-mj||
2

-||gi-mj||
2

Σ e
j

Note:   ||x||  is just shorthand for the 
length of the vector x.

gi = gene i

mj = centroid of cluster j

Genome Biology 3(11):research0059.1–0059.22 (2002)

Remove genes 
correlated >0.7 

to the 

identified 

centroids

Remove genes 
correlated >0.7 

to the 

identified 

centroids

Iterating 
fuzzy k-
means
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Genome Biology 3(11):research0059.1–0059.22 (2002)

Iterating 
fuzzy k-
means

A fun clustering strategy that builds on 
these ideas:  Self-organizing maps (SOMs)

- Combination of clustering & visualization
- A type of artificial neural network

- Invented by Teuvo Kohonen, also called 
Kohonen maps

Dr. Eng., Emeritus 
Professor of the 
Academy of Finland; 
Academician
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A fun clustering strategy that builds on 
these ideas:  Self-organizing maps (SOMs)

SOMs have:   

your data (points in some high-dimensional space)
a grid of nodes, each node also linked to a point someplace in data space 

1. First,  SOM nodes are arbitrarily positioned in data space. Then:
2. Choose a training data point.  Find the node closest to that point. 

3. Move its position closer to the training data point.
4. Move its grid neighbors closer too, to a lesser extent.  

Repeat 2-4.  After many iterations, the grid approximates the data distribution.

Wikipedia

Data points

SOM grid

single 

observation

An animated representation of training a 
2D SOM

https://en.wikipedia.org/wiki/File:TrainSOM.gif
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Kybernetes  34(1/2): 40-53 (2005)

Here’s an example using colors.  Each color has an RGB vector. Take a bunch of 
random colors and organize them into a map of similar colors:

Here’s the input color data 

Here’s the SOM 

Each SOM node lives in 
RGB space 

Iteratively test new colors, update the map using some rule

Over time, the map self-
organizes to show 

clusters of like colors.

Updated 

node 
vector

Starting

node 
vector

Difference 

from
data 

vector

weight Node neighborhood

The weight and 

node 
neighborhoods 

shrink with time 

(iterations)

Kybernetes  34(1/2): 40-53 (2005)

http://www.generation5.org/content/2004/

kohonenApplications.asp

http://users.ics.aalto.fi/tho/thesis/
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Wikipedia

A SOM of U.S. Congress voting patterns

Republicans

Democrats

Red = yes votes

Blue = no votes
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Botswana

USA

SOM of Wikipedia (from Wikipedia, naturally)
(data = wiki article word frequency vectors) 

Wikipedia
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One-dimensional SOM 
Data points

Wikipedia

SOMs can accommodate unusual data distributions

Finally, t-SNE can sometimes be a useful way to 
visualize data in 2 or 3D

= t-distributed stochastic neighbor embedding 

t-SNE tries to reproduce high-D data neighborhoods in a 2D or 3D picture by:

1. Defining a probability distribution over pairs of high-D objects such that    

“similar” objects have a high probability of being picked, whilst “dissimilar“     
objects have an extremely small probability of being picked

2. Defining a similar probability distribution over the points in the low- D map

3. Minimizing the Kullback–Leibler divergence between the two distributions
by varying the locations of the points in the low-D map, i.e.

minimize this:

van der Maaten & Hinton, Visualizing High-Dimensional Data Using t-SNE.

Journal of Machine Learning Research 9: 2579–2605 (Nov 2008)

probability i and j are close in high-D space 

probability i and j are close in low-D space 

Sum over all pairs of points
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Separating cells into cell types by t-SNE
- healthy human bone marrow, stained with 13 markers and measured by 

mass cytometry, visualized with viSNE

Amir et al., Nature Biotechnology 31:545–552 (2013)

The colors correspond to how an expert
would “gate” the cytometer

You can compute your own t-SNE embeddings 
using the online tools at: 

http://projector.tensorflow.org/

There are also some great examples at:
http://distill.pub/2016/misread-tsne/

There are only a couple of parameters you can 
(and should) tweak, mainly perplexity, which 

effectively captures the number of neighbors 

(often 5 to 50)
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BUT…
tSNE & the related technique UMAP lend 

themselves to misinterpretation, so 
use caution in interpreting them!

I recommend that you read “The specious art of 
single-cell genomics”, by Tara Chari & Lior Pachter

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011288

“In biology, single-cell expression studies almost always begin with reduction 

to two or three dimensions to produce ‘all-in-one’ visuals of the data that are 

amenable to the human eye, and these are subsequently used for qualitative 

and quantitative analysis of cell relationships. However, there is little 

theoretical support for this practice.” 

https://www.biorxiv.org/content/10.1101/2021.08.25.457696v1.full

“To illustrate the indeterminate nature of 2D UMAP and t-SNE embeddings, we developed an 

autoencoder framework to fit cells from any dataset to an arbitrary 2D shape, while 

preserving … cell-to-cell distances to an extent not much different than UMAP or t-SNE. 

Though it is unlikely scientists would present data in such forms, … they are quantitatively 

similar in … fidelity to the data … [as] UMAP or t-SNE embeddings.”
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Some take aways

Data clustering and visualization are great to build 
some intuition for your data & ask questions like:

Are my data obviously clustered? 

What’s that set of outliers over there?  …etc…

But! High-dimensional data usually can’t be 
perfectly represented in just 2- or 3-dimensions.

So, remember that most data visualization 
approaches (including SOMs, tSNE, and UMAP) 

distort the true data relationships. 
Try more than one approach and use caution in 

interpreting.
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