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Protein interactions are fundamental to the functioning of cells, and high
throughput experimental and computational strategies are sought to map
interactions. Predicting interaction specificity, such as matching members
of a ligand family to specific members of a receptor family, is largely an
unsolved problem. Here we show that by using evolutionary relationships
within such families, it is possible to predict their physical interaction
specificities. We introduce the computational method of matrix alignment
for finding the optimal alignment between protein family similarity
matrices. A second method, 3D embedding, allows visualization of inter-
acting partners via spatial representation of the protein families. These
methods essentially align phylogenetic trees of interacting protein families
to define specific interaction partners. Prediction accuracy depends
strongly on phylogenetic tree complexity, as measured with information
theoretic methods. These results, along with simulations of protein
evolution, suggest a model for the evolution of interacting protein families
in which interaction partners are duplicated in coupled processes. Using
these methods, it is possible to successfully find protein interaction
specificities, as demonstrated for .18 protein families.
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Introduction

Protein interaction specificity is vital to cell
function, but the maintenance of such specificity
requires that it persist even through the course
of strong evolutionary change, such as the dupli-
cation and divergence of genes. Binding speci-
ficities of duplicate genes (paralogs) often diverge,
such that new binding specificities are evolved.
Given that such paralogous gene families abound,
such as the .560 serine-threonine kinases in the
human genome,1 predicting interaction specificity
can be difficult, especially when paralogs exist
for both interaction partners. In these cases, the
number of potential interactions grows combina-
torially. This ambiguity can easily complicate the
matching of ligands to specific receptors, and for
such reasons, identification of ligands for orphan
receptors is an important, but largely unsolved,
problem.2 – 4

Computational methods for discovering specific
protein interactions fall into three broad categories:
(i) the identification of specific protein sequence or

structural features indicative of protein interaction
partners, such as sequence signatures,5 correlated
mutations,6,7 and surface patches;8,9 (ii) the use of
genomic context10 to identify interaction partners,
exploiting information such as gene order,11,12 gene
fusions,13,14 and phylogenetic profiles;15 and (iii) the
use of phylogenetic trees to account for the
co-evolution of interacting proteins.16 – 20

Of these three classes, the third is of specific
interest: the hypothesis underlying these approaches
is that interacting proteins often exhibit coordi-
nated evolution, and therefore tend to have similar
phylogenetic trees. Goh et al.17 demonstrated this
by showing that chemokines and their receptors
have very similar phylogenetic trees, as do indi-
vidual domains of a single protein such as
phosphoglycerate kinase. Detailed phylogenetic
studies of the two-component signal transduction
system18 show that a phylogenetic tree constructed
from two-component sensor proteins has a similar
structure to that from two-component regulator
proteins.

Here, we exploit this tendency for interacting
proteins to have similar phylogenetic trees, and
present a general computational method for the
identification of specific interaction partners in
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such protein families. We provide an information-
theoretic interpretation of when the method is
appropriate, and present a model that emerges for
the evolution of interacting proteins.

Results

Prediction of interactions by matrix alignment

Figure 1(A) presents the phylogenetic trees of
two families of interacting proteins, the Ntr-type
two-component sensors and their corresponding
regulators. There is striking similarity in the rela-
tive placement of interacting protein pairs across
the two trees: The ntrC proteins from Escherichia
coli and Salmonella typhimurium are adjacent in the

regulator tree, as are their interaction partners
(ntrB) in the sensor tree. Likewise, the ntrC pro-
teins are roughly equidistant in the regulator tree
from the hydG regulator proteins; this relationship
is maintained by their interacting partners in the
sensor tree. Many details of the overall tree struc-
ture are shared between the ligand and receptor
tree, as noted previously for two-component
sensor/regulators18 and for chemokines/chemokine
receptors.17

Figure 1(B) presents the simplest such case of
interaction partners, in which each interacting
protein (e.g. GyrA and GyrB) has a single paralog
(e.g. ParC and ParE, respectively, which interact
specifically with each other). Again, the trees of
the interacting partners are notably similar. In fact,
even the halves of the trees specific to each paralog

Figure 1. (A) A comparison of the phylogenetic trees of Ntr-family two-component sensor histidine kinases and their
corresponding regulators. Circles enclose orthologous genes. Interacting proteins, colored similarly, sit in similar
positions in the two trees. (B) A comparison of the phylogenetic tree of the GyrA and ParC proteins with the tree
of their corresponding interaction partners, GyrB and ParE, colored as in (A). Bold arrows indicate an example of
differing branch lengths, which help to distinguish the Gyr and Par subtrees.
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are similar, as the GyrA half strongly resembles
both the GyrB and ParE halves. However, a careful
examination of branch lengths indicates subtle
differences between the halves, such as is indicated
by the arrows in Figure 1(B), such that the correct
interaction partners (GyrA with GyrB, and ParC
with ParE) have the most similar subtrees.

In order to exploit the evolutionary information
contained in such interacting protein families,
we developed an algorithm that is conceptually
equivalent to superimposing the phylogenetic
trees of the two protein families. This approach,
which we term matrix alignment and which is
implemented in the program MATRIX, is dia-
grammed schematically in Figure 2.

Rather than directly compare the phylogenetic
trees, the corresponding similarity matrices are
compared to each other, each matrix summarizing
the evolutionary relationships between the pro-
teins within one sequence family. One matrix is
shuffled, maintaining the correct relationships
between proteins but simply re-ordering them in

the matrix, until the two matrices maximally
agree, minimizing the root mean square difference
between elements of the two matrices. Interactions
are then predicted between proteins heading
equivalent columns of the two matrices. For matrix
alignment, MATRIX currently applies a stochastic
simulated annealing-based algorithm.

Matching two-component sensors to regulators

As a first test of matrix alignment, we examined
the Ntr-type two-component sensor and regu-
lator families of Figure 1. Binding partners were
assigned according to the KEGG pathway
database21 resulting in a set of 14 interactions,
spanning genes from eight organisms. Matrix
alignment was performed, testing specifically
whether or not the genes from one genome (for
example, the four E. coli regulators) could be
matched to their correct binding partners (here,
the four E. coli sensor proteins).

Figure 2. The matrix alignment
method for predicting protein inter-
action specificity. Proteins in family
A interact with those in family
B. In each family, a similarity matrix
summarizes the proteins’ evolution-
ary relationships. The algorithm
uses the similarity matrices to pair
up the genes in the two families.
Columns of matrix B are re-ordered
(along with their corresponding
rows in the matrix) such that the
B matrix agrees maximally with
matrix A, judged by minimizing
the root mean square difference
(r.m.s.d.) between elements in the
two matrices. Interactions are then
predicted between proteins heading
equivalent columns of the two
matrices.

Co-evolution of Interacting Proteins 275



The results following 100 runs of simulated
annealing are presented in Table 1 (and later sum-
marized in Figure 4(A)). Diagonal entries in the
table correspond to the correct binding partners,
and the values reported in each table cell indicate
the fraction of simulated annealing runs in which

the corresponding proteins were predicted to be
binding partners. For example E. coli atoS is paired
correctly with E. coli atoC 95% of the time (in 95 of
the 100 runs); as this match outscores any other
match to atoS or atoC, these are predicted to be
interaction partners. In a typical run, the starting

Table 1. The prediction of protein interactions between interacting protein families by the method of matrix alignment

The top table indicates the predicted interactions between Ntr-type two-component sensors and regulators, and the bottom table
indicates the predicted interactions between CKR-type chemokines and chemokine receptors. The diagonal of each matrix represents
the correct known interacting pairs based on the assignments of the KEGG database (top) or measured binding affinities (bottom).
Each Table entry represents the fraction of matrix alignment runs in which a given interaction was predicted. Filled boxes represent
the predicted interaction partners observed in the highest fraction of the runs, while broken line boxes represent the interaction
partners predicted when allowing interactions between orthologs. There is an ambiguity in the interaction partners of the chemokine/
chemokine receptors, indicated by bold broken boxes, leading to either two correct or two incorrect predictions.
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r.m.s.d. between the sensor and regulator similarity
matrices was ,0.242; following application of
the algorithm, it was ,0.207. For comparison, the
correct pairing corresponded to an r.m.s.d. of
0.181, indicating that the algorithm typically
found a solution that efficiently minimized the
r.m.s.d. but still did not find the global optimum
from among the 14!, or ,1011, possible solutions.

To assess the accuracy of the interaction predic-
tion, two values were examined: the stringent
accuracy, defined as the accuracy of exact matches
of known binding partners, and the effective accu-
racy, which was evaluated by accepting matches
to orthologous protein family members (such
as correctly matching ntrB to ntrC, but with the
match occurring between the E. coli protein and
the S. typhimurium protein, rather than E. coli with
E. coli.) Because the species is known in every
case, we can typically increase the accuracy by con-
sidering the orthologs. For the Ntr-type two-com-
ponent regulator/sensor case, the stringent
accuracy was 57% while the effective accuracy
was 86%. All four E. coli proteins were correctly
matched to their interaction partners, as were
the S. typhimurium proteins. Thus, inherent infor-
mation exists in the phylogenetic trees of the two
families that can be automatically extracted to
predict protein interaction partners.

Visualization of protein interaction partners by
3D embedding

In order to summarize in a clear manner the
many evolutionary relationships and interactions,
we developed a method, termed 3D embedding
and diagrammed in Figure 3, for effectively
visualizing the aligned similarity matrices and
predicted protein interaction partners: coordinates
in three-dimensional space are assigned to proteins
in a sequence family such that the spatial separa-
tion of the proteins is proportional to the evolu-

tionary distances between the proteins described
in the similarity matrix. Protein interaction part-
ners can then be visualized by assigning coordi-
nates to each protein in the two protein families
that interact with each other, followed by super-
position of one family onto the other by least
squares minimization of the distance between
interacting partners. During this superposition,
the relative distances between the proteins of a
sequence family are unchanged. Instead, only
the orientation of the resulting “constellation” of
proteins in one family is changed relative to the
proteins of the other family, as shown in Figure 3.

Figure 4(A) shows the application of 3D
embedding to the Ntr regulator/sensor proteins.
In this example, the proteins are aligned such that
the distances between the predicted interaction
partners are minimized. As can be seen in the
Figure, proteins cluster in distinct regions in
space, mirroring the adjacent placement of ortho-
logs in the phylogenetic trees of Figure 1. Inter-
acting protein partners generally sit close to each
other in space. Orthologs appear to exhibit little
apparent preference for their precise positions
within a particular spatial cluster, consistent with
the tendency of the matrix alignment algorithm
to assign interactions to orthologous protein
sequences rather than the sequences of the correct
species. From Figure 4(A), it is obvious that matrix
alignment succeeds in finding quite complex
relationships that successfully satisfy the many
constraints, such as matching yfhA to yfhK, rather
than the potentially closer hydH, in order that
both S. typhimurium and E. coli hydH interactions
could be predicted.

Figure 4(B) shows the application of 3D embed-
ding to the simpler problem of matching
interaction partners given the right pair and a
homologous pair as competition. The solution
demonstrates the extreme robustness of matrix
alignment for such simple cases. Here, interactions

Figure 3. To visualize protein
families, proteins are plotted in 3D
space such that each protein is
separated from other proteins in its
family by distances dij proportional
to the evolutionary similarities sij

in the family’s similarity matrix. To
visualize interactions between two
protein families (labeled A and B),
the families are superimposed by
rigid-body least-squares fit of the
predicted interaction partners onto
each other.
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are mapped between the homologs GyrA and ParC
(from ten organisms, as shown in Figure 1(B)) with
their respective interaction partners GyrB and
ParE. In the Figure, the Gyr proteins are spatially
well-separated from the Par proteins, illustrating
the ability of 3D embedding to separate members
of a protein family into their functional subtypes.
In all cases, GyrA proteins are paired with GyrB
proteins, while ParC proteins are paired with ParE
proteins. As with Figure 4(A), the interacting
partners tend to be clustered in space. In all, 14
out of the 20 interactions are predicted correctly;
when matches to orthologs are allowed, all 20
interactions (100%) are correctly predicted.

The effects of phylogenetic tree structure on
inferring protein interactions

Since phylogenetic relationships and tree struc-
ture form the foundation of this approach, we
investigated the importance of tree structure to the
method’s success. For example, we expect pairs of
proteins in a tree that are highly similar to each
other to be difficult to distinguish when assigning
interaction partners, as in the case of the E. coli/
S. typhimurium ntrC/ntrB proteins of Figure 1(A)
that are incorrectly paired up in Table 1. Several
such pairs of similar proteins can even lead to
alternate, equally scoring solutions, as is the case

Figure 4. (A) A side-by-side stereo diagram representing the predicted and known interactions between Ntr-type
two-component sensors (dark spheres) and regulators (light spheres). For both A and B continuous lines indicate inter-
actions predicted by matrix alignment and broken lines indicate known interaction partners for cases with incorrect
predictions. 12 out of 14 interactions are correctly predicted; if predictions to orthologous proteins are allowed, only
the predictions for A. aeolicus are incorrect. (B) Stereo diagram of the interactions between GyrA (dark gray spheres)
and its homolog ParC (black spheres) with their respective interaction partners GyrB (light gray spheres) and its homo-
log ParE (white spheres). The Gyr and Par proteins are separated into distinct spatial regions in the process of 3D
embedding. With the exception of the C. crescentus proteins, interaction partners consistently sit adjacent to one another
in space.
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for the CKR-type chemokines and their receptors
in Table 1. In this example, the mouse/rat EOTA
chemokines are predicted to bind the mouse/rat
CKR2 and CKR3 receptors with equal confidence,
so the precise binding partners are obscured by
this underlying symmetry in the phylogenetic
trees.

In order to systematically test the relationship
between tree structure and matrix alignment, pro-
tein phylogenetic trees with differing complexities
were created by simulating the evolution of a
single protein into a protein family. Pairs of trees,
representing co-evolved interaction partners, were
created in coupled simulations and were analyzed
by matrix alignment. By systematically varying
the complexity of the trees created, the contri-
bution of tree complexity to the effectiveness of
matrix alignment could be examined.

For a given simulation of one protein (the pro-
genitor protein) evolving into a family, tree com-
plexity was controlled by specifying the frequency
at which the progenitor protein was duplicated as
compared to other proteins in the growing tree.
Each new protein was added to the family by
duplicating, with mutation, an existing protein
under the following rule: the progenitor protein
was duplicated with probability p0; and a different
protein in the family (chosen at random) was
duplicated with probability 1 2 p0: In this way,
trees generated with p0 , 1 are composed only of
direct duplications of the progenitor protein, with
all proteins approximately the same evolutionary
distance from each other. These trees are quite
simple and approximately radial in structure, as
illustrated in the inset in the top panel of Figure 5.
In contrast, trees generated with p0 , 0 are more
complex in structure, since lifting the requirement
to duplicate the progenitor protein allows more
complex patterns of duplications to occur and
produces more diverse evolutionary relationships
between the proteins.

To simulate the evolution of protein interaction
partners, two families were “evolved” in a coupled
fashion from two initial seed sequences, generated
randomly as described in Materials and Methods,
with the choice of protein to be duplicated at each
step forced to be equivalent for the two families.
For example, if in protein family A, the second pro-
tein was duplicated to create the third, then the
second protein would be duplicated to create the
third in family B as well. In this manner, the trees
would be similar, though not identical, as stochas-
tic mutations were introduced with each dupli-
cation as described in Materials and Methods.

Following each simulation, interactions between
the two simulated interacting sequence families
were predicted by matrix alignment. The results,
plotted in Figure 5(A), indicate that tree complexity
is strongly correlated with algorithm performance.
Predictive accuracy increases with increasing tree
complexity, consistent with our intuition that
simple trees are ambiguous about relationships
between proteins, and therefore are less useful for

Figure 5. The accuracy of matrix alignment depends
strongly on the complexity of the phylogenetic trees.
(A) Simulations of the evolution of interacting proteins
indicate that the tree complexity, measured by constrain-
ing simulated trees to be more or less radial, limits
the accuracy of matrix alignment. As tree complexity
increases, accuracy increases. This relationship is
exploited in (B) (top panel), which shows that mutual
information of similarity matrices correlates with predic-
tion accuracy. Results from simulations involving pairs
of protein families of different sizes indicate that as the
mutual information of the similarity matrices increases,
interaction prediction accuracy increases. Mutual infor-
mation values are calculated in bins of width 0.1 ((B),
bottom panel). This trend is confirmed in 34 actual inter-
acting protein families, listed in Table 2. By allowing
matches to orthologous proteins, the effective accuracy
of the algorithm (white diamonds) is considerably higher
than the stringent accuracy from exact matches (black
squares). Matrix alignment significantly outperforms
random choices of interaction partners (white squares).
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predicting interactions in the manner we have
described.

A score that quantitatively predicts the
accuracy of matrix alignment

As simulations demonstrate a clear dependence
of the success of matrix alignment upon the
complexity of the phylogenetic trees, we asked if a
measure of agreement between similarity matrices
that also considered tree complexity would accu-
rately predict the algorithm’s performance. One
such measure is the mutual information22 of the
similarity matrices, which is a function of both
the entropy of the matrices, taking into account
the phylogenetic tree complexity, and the agree-
ment of the two similarity matrices with each
other.

Interaction prediction accuracy was compared to
the mutual information of the similarity matrices
from simulations of pairs of co-evolving families
of 10, 15, or 20 proteins of varying tree complexity.
Results, plotted in Figure 5(B), (top) indicate that
the mutual information correlates well with the
prediction accuracy, with higher values of mutual
information corresponding to higher prediction

accuracy. No significant dependency of the
measure on the size of the protein family was
observed.

To extend this analysis to real data and test the
general applicability of matrix alignment, we
evaluated its performance on 34 sets of actual pro-
tein interaction partners, listed in Table 2, inclu-
ding the Omp, Nar, Cit, and Lyt-type two-
component sensor/regulator proteins, the CKR
and CCR-type chemokine/chemokine receptors,
and membrane/substrate binding protein and
interacting membrane protein components of ABC
transporters. We tested simpler binary interactions,
such as matching the paralogs GyrA and ParC
with their specific partners, GyrB and ParE,
respectively. Finally, we also tested the matching
of phylogenetic trees composed of single inter-
action partners but from multiple species to see if
they lent themselves to a similar analysis. Each set
of interaction partners was analyzed by matrix
alignment, and the prediction accuracy from the
analyses (reported in Table 2) was compared to
the mutual information of the corresponding
sequence similarity matrices.

A plot of the mutual information values against
the prediction accuracy (bottom panel of Figure

Table 2. The performance of matrix alignment at predicting diverse protein interaction partners

Interacting protein families
No. of

proteinsa

Effective
accuracy (%)

Stringent
accuracy (%)

Mutual
information

Chemokine/receptor—mouse/human/rat 31 48.4 12.9 0.59
Chemokine/receptor—human 13 NA 23.1 0.55
CKR-type chemokine/receptor—mouse/human/rat 18 55.5 33.3 0.79
CCR-type chemokine/receptor—mouse/human 6 100 33.3 0.93
Omp-type regulator/sensors—E. coli 14 NA 21.4 0.48
Omp-type regulator/sensors—B. subtilis 13 NA 7.7 0.64
Omp-type regulator/sensors—5 bacteria 16 43.8 31.3 0.56
Omp-type regulator/sensors—E. coli/B. subtilis 27 NA 18.5 0.35
Nar-type regulator/sensors—8 bacteria 22 36.4 36.4 0.47
Ntr-type regulator/sensors—8 bacteria 14 85.7 57.1 0.62
Cit-type regulator/sensors—E. coli/B. subtilis 5 100 100 0.77
Lyt-type regulator/sensors—E. coli/B. subtilis 4 50 50 1.09
Two component sensor/regulators—E. coli 27 NA 7.4 0.39
Lyt-, Ple-, and “other”-type regulator/sensors—8 bacteria 20 NA 5 0.35
CheA/CheY—11 bacteria 13 69.2 69.2 0.83
ABC transporter membrane protein 1/2—E. coli 19 NA 26.3 0.45
ABC transporter memb./binding prot.—E. coli 17 NA 0 0.43
ABC transporter membrane protein 1/2—H. influenzae 14 NA 0 0.46
ABC transporter memb./binding prot.—H. influenzae 13 NA 11.1 0.42
GyrA/B,ParC/E—a-proteobacteria 20 100 70 1.29
GyrA/B,ParC/E—Gram positive bacteria 28 100 46.4 0.97

Single interaction partners from multiple organisms
CheA/CheB—bacteria 8 NA 100 0.86
Acetyl CoA carboxylase a/b Gram positive bacteria 9 NA 33.3 0.94
Acetyl CoA carboxylase a/b proteo bacteria 16 NA 75 1.12
Succinate CoA synthetase a/b proteo bacteria 22 NA 81.8 0.83
Succinate CoA synthetase a/b archaea 13 NA 30.8 0.91
GyrA/GyrB—a-proteobacteria 20 NA 72.7 1.29
GyrA/GyrB—Gram positive bacteria 18 NA 50 1.02
GyrA/GyrB—archaea 10 NA 20 0.56
Pyruvate dehydrogenase a/b—bacteria 17 NA 52.9 0.76
ParC/ParE—bacteria 26 NA 61.5 1.00
ParC/ParE—a-proteobacteria 12 NA 66.6 1.40
ParC/ParE—Gram positive bacteria 14 NA 57.1 1.26
DNA polymerase III E2/E3—bacteria 20 NA 45 0.82

a Number of proteins in a family of interacting proteins (e.g. number of columns in the corresponding similarity matrix).
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5(B)) shows a clear positive correlation (R ¼ 0:7;
accuracy ¼ (63.29 £ MI) 2 7.35), significantly out-
performing random expectations and indicating
that mutual information can be used as an inde-
pendent measure of the prediction accuracy. A
mutual information value of 0.9 corresponds
roughly with a stringent prediction accuracy of
50%; a mutual information value of 1.3 corre-
sponds to ,75% accuracy. The effective accuracies
consistently exceed these values. The trend line
from the simulations agrees within error with the
actual protein interactions examined, indicating
that the mutual information measure correctly
models both phylogenetic tree complexity and
similarity, and is an appropriate measure for the
prediction of protein interaction partners.

Discussion

Here, we present an automated method to
predict protein interaction partners based upon
similarity between the phylogenetic trees of inter-
acting proteins. The method is effective, especially
when combined with a quantitative score that
correctly predicts the method’s performance that
arises from an information theoretic analysis of
the complexity of the phylogenetic trees and
their similarity to each other. Although we have
specifically focused on interacting protein families
of identical size, the method is easily generalized
to families of different sizes by finding the subset
of proteins in the larger family that best matches
the proteins in the smaller family. Also, we have
presented an approach based on optimization; it is
reasonable to expect that methods of lower algo-
rithmic complexity are available. Although we
describe the hardest case for the algorithm, in
which any protein can interact with any partner,
in practice a branch-and-bound approximation
is likely to greatly reduce the search space
and improve the algorithm’s performance. This
improvement could be made by allowing simi-
larity matrix columns to be exchanged only
between proteins of the same species. However,
for the case in which all proteins derive from one
organism (for example, the human chemokines
and receptors), such an improvement is ineffective,
and algorithmic complexity will have to be
reduced by other approaches.

Simulations of protein evolution indicate when
the alignment of phylogenetic trees is expected to
be informative. For low complexity trees, proteins
are not uniquely different from each other; the
consequence of this trend is that little information
is stored in the tree that allows it to be oriented
unambiguously to another tree. For complex phylo-
genetic trees, proteins have sufficiently unique
patterns of similarity that alignments of such trees
are unambiguous and more likely to lead to suc-
cessful predictions, as shown in Figure 5.

These trends reflect not the degree of co-evolu-
tion of the interacting partners, but rather the

intrinsic ambiguities in matching up trees in this
fashion. The mutual information calculation
accounts for this trend, providing a quantitative
measure of the trees’ agreement with each other as
well as their intrinsic complexity. With the mutual
information scoring technique, the importance of
tree structure can be exploited to improve predic-
tions: the precise proteins included in an analysis,
or the organisms from which they derive, can be
chosen to maximize the phylogenetic trees’ mutual
information, thereby enhancing the accuracy of
predicted interactions. Many of the 34 examples
in Table 2 represent just such experiments. For
example, matching all of the E. coli two-component
sensors against all of the two-component regula-
tors, produces a low mutual information score
(0.39) and a low prediction accuracy (7%), but
limiting the analysis to the Cit-type regulator/
sensor subfamilies results in higher mutual infor-
mation scores (0.77) and correspondingly higher
accuracy (100%).

When the information content of the trees is
high, the correct interaction partners might be
easily predictable simply by examining the trees.
In practice, manual tree comparisons are often
non-trivial and provide no information about the
confidence to be placed in the predictions, as illus-
trated by the Gyr/Par trees of Figure 1(B). The
mutual information between these trees is quite
high, even though the topologies of the Gyr/Par
subtrees are identical to each other. Finding inter-
action partners by visual examination of the trees
requires careful attention to subtle changes in the
branch lengths. However, the matrix alignment
method offers an objective, quantitative measure
of the significance of the predicted interactions.
Most important, the approach is automated, allow-
ing it to be applied on a large-scale to many protein
families.

Accompanying the matrix alignment algorithm
is a new method, termed 3D embedding, for
visualizing protein families and interactions
between them. For one protein family, this method
visually summarizes the evolutionary relationships
among the proteins. For two interacting protein
families, these 3D embeddings can be super-
imposed, and the potential interaction partners
can be directly visualized. 3D embedding opens
the possibility of rank-ordering predicted inter-
action partners, such as by their spatial distance
from each other. The method potentially allows
the least squares alignment of two families on the
basis of known protein interactions, followed by
the prediction of interactions between the proteins
not specifically used to generate the alignment,
allowing the analysis of protein families of unequal
sizes, and possibly even proteins with multiple
binding partners.

Finally, the 3D embedding method illustrates
how matrix alignment sometimes proceeds in a
surprising fashion. As an example, it correctly
pairs the C. crescentus GyrA and GyrB proteins, in
spite of the fact that the two proteins sit in quite
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dissimilar relationships to the rest of their respect-
ive families (Figure 4(B)). However, the interaction
is presumably predicted between the C. crescentus
proteins because all other protein pairs match
better, thereby forcing the C. crescentus proteins
together in spite of the poor fit.

A model for the evolution of
interacting proteins

Proteins are constrained to maintain their inter-
actions and therefore have to co-evolve with their
interaction partners.23 However, the fact that the
method presented here works illustrates an
additional aspect of the evolution of interacting
proteins: Two models can be considered for the
evolution of interacting proteins, which contrast
in the degree of coupling between the evolution of
protein interaction specificity and the ancestral
genetic events producing protein families (specific-
ally, we consider the case of paralogs). Both models
begin with an ancestral pair of interacting proteins.
In the first model, the progenitor proteins are
duplicated, and the duplicated proteins (paralogs)
are free to evolve new interaction partners, such
as by mutation and selection. After multiple
duplications and evolution of new interaction
specificities, two families of interacting proteins
result such that the correlation in position in the
phylogenetic trees is lost between pairs of paralogs
with their corresponding interaction partners.
In short, when gene duplications precede the
evolution of interaction specificity, the phylo-
genetic trees of the interaction partners are no
longer alignable in the fashion of the trees
examined here.

However, in an alternate model, interacting pro-
tein partners are duplicated in a correlated fashion
through the course of evolution. The interaction
specificity is maintained or created in a process
tightly coupled to the process of gene duplication.
Only in this case will the phylogenetic trees of
the interacting protein families be similar. The
data presented here support this second model,
suggesting that interacting proteins in these
families are not simply duplicated and freed to
evolve new interaction partners, but rather that
interacting partners are duplicated in coupled pro-
cesses leading to a measurable association between
the specificity of protein interaction partners and
the genetic relationships of their corresponding
genes.

Materials and Methods

Sequence alignments, similarity matrices, and
phylogenetic trees

Sequences from SwissProt24 were aligned using CLUS-
TALW1.7. Similarity matrices were calculated from the
multiple sequence alignment using CLUSTALW.25 Each
similarity matrix entry sij represents the evolutionary
distance between a pair of proteins in a sequence family

after corrections for multiple mutations per amino acid
residue.26 Similarity matrices for pairs of interacting
protein families were input to the MATRIX matrix
alignment algorithm described below. Unrooted phylo-
genetic trees were calculated via neighbor joining using
PHYLIP.27 Chemokine interactions were defined as
described by Oppenheim and Feldmann.28 Other inter-
actions were assigned according to the KEGG database,
version 22.0.21

Optimal alignment of similarity matrices

Pairs of similarity matrices were compared by their
root mean square difference (r.m.s.d.), calculated as:

rmsd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

nðn 2 1Þ

Xn

j¼2

Xj21

i¼1

ðaij 2 bijÞ
2

vuut ;

where aij and bij represent equivalent elements of the two
similarity matrices, and n is the number of proteins in
each family. Smaller r.m.s.d. indicates greater agreement
between two matrices.

To align matrices, the order of the rows in one matrix
(and therefore columns, as a matrix is symmetric) is
optimized with simulated annealing29 to minimize the
r.m.s.d. between matrices: One similarity matrix (family
A in Figure 2) remains unchanged. In the second simi-
larity matrix (family B in Figure 2), pairs of rows (and
their symmetric columns) are randomly chosen and
their elements are swapped, evaluating the resulting
change in r.m.s.d. If r.m.s.d. decreases, the swap is kept.
If r.m.s.d. increases, the swap is kept with a probability
p proportional to an external control variable T; such
that p ¼ expð2d=TÞ; where d equals the increase in
r.m.s.d. with the swap. The control variable T is initial-
ized such that p is first set to 0.8; T is decreased linearly
with each iteration ðTnew ¼ 0:95ToldÞ: This process is
iterated until the probability of accepting an increase is
less than 10%.

Following simulated annealing, interactions are pre-
dicted between proteins heading the corresponding
rows of the two similarity matrices. As the possible
number of re-ordered matrices is factorial with the num-
ber of proteins in the matrix, this method does not
guarantee the correct solution for large matrices (.15
proteins). In these cases, the protocol is repeated 100
times, and the frequency of occurrence of a given inter-
acting protein pair is calculated and tabulated in order
to test the reproducibility of the predictions. Interactions
are then assigned between the most frequent protein
pairings.

3D embedding of protein sequence families

Proteins were represented as mass-less points in space
connected by springs whose equilibrium lengths were
equal to the proteins’ pair-wise similarities ðsijÞ: Each
protein in a sequence family was initially assigned to a
random position, then moved in an iterative fashion to
minimize the action of spring forces. At equilibrium, the
proteins are placed such that distances separating the
proteins ðdijÞ agree maximally with the similarities in
the similarity matrix, except for the distortion inherent
in mapping high-dimensional relationships into three-
dimensional space. Pairs of interacting protein families
visualized in this fashion were superimposed by rigid
body least squares fit of one family onto the other using
SwissPDBViewer,30 minimizing the distance between
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predicted or known interaction partners. Note that the
possibility exists for positioning a set of proteins in
mirror-image embeddings, complicating alignment
of interacting proteins. In practice, repeating the
embedding to achieve compatible handedness with the
interacting proteins can circumvent this problem.

Simulations of the evolution of protein interactions

Pairs of amino acid sequences of length 300, represent-
ing ancestral interacting proteins (sequences 1A and 1B),
were randomly generated using naturally occurring
amino acid frequencies. The evolution of a sequence
pair into two families of interacting paralogs was then
modeled by successive duplication, with mutation, of a
protein from family A and the corresponding protein
from family B, forcing parallel duplications in the two
families. Mutations were randomly introduced at each
duplication with the amino acid substitution frequencies
of a PAM25 substitution matrix,31 which has the effect of
mutating ,25% of the amino acid residues per protein
per duplication. In this manner, the underlying pattern
of duplications is held constant between two families,
and point mutations in each sequence are modeled.

After a simulation, the family A sequences were
aligned to each other, as were the family B sequences.
The similarity matrix for each family was calculated
(as for actual proteins) and matrix alignment performed.
Correct predictions were assigned between equivalent
proteins (e.g. pairing 1A to 1B, the first duplicate of 1A
to the first duplicate of 1B, etc.). Simulations were
repeated with a parameter p0 controlling the choice of
ancestor for each new paralog, as described in the text.
In Figure 5(A), simulations were performed ten times
per data point plotted for protein families of ten
members; in Figure 5(B), 100 simulations per value of p0

were performed for a given family size, sampling from
p0 ¼ 0:0 to 1.0 in 0.1 increments.

Information theoretic-based measure of agreement
between phylogenetic trees

The agreement between pairs of phylogenetic trees
was calculated using an information theory22-based
metric, mutual information, which accounts both for the
similarity matrices’ agreement as well as for their intrin-
sic information content. The information content of a
similarity matrix is assessed as the entropy HðxÞ of the
distribution of values in the similarity matrix, calculated
as:

HðxÞ ¼ 2
X

x

pðxÞlog pðxÞ;

where x represents bins of values drawn from a simi-
larity matrix, and pðxÞ represents the frequency with
which those values are observed in the matrix. Given
two similarity matrices, the relative entropy Hðx; yÞ
represents the extent of their agreement, calculated as:

Hðx; yÞ ¼ 2
X
x;y

pðx; yÞlog pðx; yÞ;

where x; y represents bins of pairs of values in equivalent
positions of the two similarity matrices, and pðx; yÞ
represents the relative frequency with which pairs of
values are observed in equivalent positions of the two
matrices.

The mutual information (MI) between two matrices,
representing their overall agreement, is calculated as:

MI ¼ HðxÞ þ HðyÞ2 Hðx; yÞ;

accounting both for the complexity of the phylogenetic
trees (in the HðxÞ and HðyÞ terms, which are larger with
more complex trees) and their similarity (in the Hðx; yÞ
term, which is smaller given better agreement). A high
mutual information score indicates a pair of complex
and mutually consistent phylogenetic trees.
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