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Mass spectrometry (MS)-based shotgun proteomics allows protein identifications even in complex biological samples. Protein

abundances can then be estimated from the counts of tandem MS (MS/MS) spectra attributable to each protein, provided one

accounts for differential MS detectability of contributing peptides. We developed a method, APEX, which calculates Absolute Protein

EXpression levels based upon learned correction factors, MS/MS spectral counts and each protein’s probability of correct

identification. This protocol describes APEX-based calculations in three parts. (i) Using training data, peptide sequences and their

sequence properties, a model is built to estimate MS detectability (Oi) for any given protein. (ii) Absolute protein abundances are

calculated from spectral counts, identification probabilities and the learned Oi -values. (iii) Simple statistics allow calculation of

differential expression in two distinct biological samples, i.e., measuring relative protein abundances. APEX-based protein

abundances span 3–4 orders of magnitude and are applicable to mixtures of 100s to 1,000s of proteins.

INTRODUCTION
Mass spectrometry (MS)-based shotgun proteomics is a fast and
relatively easy method for protein identification. A shotgun pro-
teomics experiment typically proceeds by tandem MS (MS/MS)
analysis of peptides from proteolytically digested proteins, followed
by in silico matching of the MS/MS spectra against a database of
theoretical peptide spectra derived from protein sequences. Pro-
teins are identified from combined evidence for their composite
peptides, resulting in a list in which each protein is associated
with a confidence score of correct identification, e.g., from Protein
Prophet1. In addition, an MS dataset provides information on the
types and number of peptide spectra associated with each protein,
as well as peak heights.

A number of approaches have been developed to quantify
protein observations from peak heights in shotgun proteomics
experiments by introducing internal reference standards (e.g., ref.
2), often by addition of isotopically labeled peptides3,4. These
reference standards can be derived from cells grown in labeled
media, as in SILAC (stable isotope labeling with amino acids in cell
culture)5, by derivatizing natural samples, as in ICAT (isotope-
coded affinity tags)6, or can instead be synthesized and added to
samples, as in isotope dilution (e.g., AQUA7). The necessity (and
expense) of synthesizing thousands of isotopically labeled peptides
has prevented easy scaling to full proteomes, even when employing
unlabeled peptides8.

Thus, development of label-free quantitation methods for MS
has been of high interest. Recently, approaches have considered
quantitation from the MS/MS sampling statistics in a shotgun
proteomics experiment. Both the coverage of unique peptides in a
protein (i.e., percentage of possible peptides per protein actually
observed) and the total number of repeat observations of MS/MS
spectra from all peptides in a protein (spectral count) approximate
protein abundance9–16. However, both measures have shortcom-
ings, such as coverage showing saturation (at 100%), spectral
counts not accounting for protein size (larger proteins contribute

more peptides), both approaches ignoring sampling depth, and
neither approach considering the prior odds of observing any
particular peptide in the experiment. Peptides vary considerably
in their ability to be detected by an MS instrument due to, for
example, chemical sequence properties that affect peptide ioniza-
tion17. Although such trends can be partly predicted from a
peptide’s amino acid composition18–24, previous quantitation
approaches have not incorporated these predictions to adjust
observed spectral counts.

We developed a method, called APEX (Absolute Protein
EXpression index), which uses protein identification scores, spec-
tral counts and prior estimates of the number of unique tryptic
peptides expected for the protein (Oi-value) to calculate absolute
protein expression indices25. We estimate the Oi-value employing
machine learning techniques accounting for protein size, sequence
properties, ionizability and other properties influencing MS detect-
ability. The number of MS/MS spectra observed in the experiment,
i.e., repeat peptide observations, is then normalized by the Oi-value
for each protein, i.e., the number of unique peptides expected, and
serves as an estimate of the protein’s abundance. We also normalize
by the total number of spectra observed in the experiment to enable
comparison between experiments with different sampling depths.

APEX is a robust and rapid method to quantify absolute protein
abundance. It is appropriate for large-scale protein expression
measurements where absolute abundance estimates are desirable
and especially where isotope labeling is impractical. In contrast to
other non-MS-based techniques26–29, APEX is simple to use for
large-scale data sets and differential protein expression and does
not require construction of fusion protein libraries, labeling or
internal standards.

APEX-based protein abundances span 3–4 orders of magnitude
and are applicable to mixtures of 100s to 1,000s of proteins25. We
developed and tested APEX on two different electrospray ionization
MS instruments (ThermoFinnigan Surveyor/DecaXP+ iontrap
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(LCQ), ThermoFinnigan LTQ-OrbiTrap); however, the method
is equally applicable to other MS instruments. APEX has been
successfully applied to proteomes of yeast25,30, Escherichia coli,
mouse25, Mycobacterium31, and Arabidopsis32, as well as human
(C.V., E.M.M., L.O. Penalva, unpublished data). Related methods
based on spectral counting were used, for example, for the fission
yeast proteome33.

This protocol describes APEX in three sections (Fig. 1). First,
using a high-quality MS dataset, vectors of sequence features and
machine learning techniques, we build a model to predict peptide
MS detectability (Section 1A in Fig. 1). The resulting model is
organism- and sequence-independent and can be reused for any set
of sequences analyzed on the same MS instrument; the training and
testing section can be omitted in further experiments. Then, using
the model and amino acid sequence features, we predict protein MS
detectability (Oi-values) as the sum of the respective peptide
detectabilities (Section 1B in Fig. 1). This section is very similar
to Section 1A with respect to preparation of the input data files.
However, peptide observations are not known but predicted using
the model created in Section 1A. Once Oi-values have been
calculated for a particular set of sequences and experimental
setup, this step can be omitted in future analyses.

Second, using postprocessed MS data, Oi-values for the detected
proteins and an estimate of the total number of molecules per cell
(C), we calculate indices of APEX for a given protein i (Section 2
in Fig. 1).

Third, for detection of relative protein abundances in two
different samples, we present a test for statistically significant
differential protein expression (Section 3 in Fig. 1). The statistical
test (Z-score) is based only on spectral counts; for an estimate of
expression fold change between the two samples APEX expression
values need to be calculated as described in Steps 20–23.

We describe this protocol with the example of yeast cell lysate
analyzed on the LTQ-OrbiTrap. At http://www.marcottelab.org/
APEX_Protocol/, we provide input and output files created during

the process, a suite of corresponding Perl scripts as well as data from
analysis on the LCQ. We also provide example data for training and
prediction of MS detectability of E. coli, yeast and human proteins
both for the LTQ-OrbiTrap and the LCQ, as well as a Z-score
analysis of yeast grown in minimal and rich medium. The models
trained on these (or other) datasets can analyze data of any origin if
the same parameters have been used for data postprocessing.

MATERIALS
EQUIPMENT
.MS raw or postprocessed data of proteolytic peptides from complex protein

mixture
.Mac, PC or Linux/Unix workstation
.Amino acid sequences of proteins of interest, e.g., FASTA file
.Information on amino acid properties, e.g., aaindex1 file from

ftp://ftp.genome.jp/pub/db/community/aaindex/

.Software to analyze MS raw data (Sequest, Mascot; Peptide
Prophet34 and ProteinProphet1, see http://tools.proteomecenter.org/
TPP.php)

.Scripting language for text parsing (e.g., Perl, Python). For a collection of
sample scripts, see http://www.marcottelab.org/APEX_Protocol/

.WEKA (http://www.cs.waikato.ac.nz/~ml/weka/) machine learning
software

PROCEDURE
Training and testing of a model for prediction of peptide and protein MS detectability: training
m CRITICAL STEP Steps 1–11 (training) can be omitted if a model has been built and saved in previous calculations for a particular
MS instrument and setup. We found empirically that models are similar between MS instruments using the same ionization method
and mass range, and the resulting Oi-values correlate. However, since, for example, an LCQ is less sensitive than an LTQ-OrbiTrap,
Oi-values are generally smaller on the former instrument than on the latter (see Supplementary Note online).

1| Postprocess MS/MS raw data using software of choice (Sequest, Mascot, PeptideProphet34 and ProteinProphet1) and parse
for proteins of confident identification (e.g., false discovery rate o5%).

2| From these proteins, select a set of B30–150 proteins identified at high confidence. Even for these well-identified
proteins, not all theoretically possible peptides will be observed, and the observation/nonobservation of peptides mapping to
the proteins is used for training (Fig. 2a).
m CRITICAL STEP Selection of high-quality training data is crucial for successful model building and model performance. The
training set of proteins (and its size) should be chosen so that (i) recall and precision (F-measure) in cross-validation are maximized
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Input OutputCalculation

1A. Training for MS 
detectability

2. APEX calculation

3. Statistical comparison 
of two datasets

Prediction of protein 
MS detectability (Oi 

values)

Absolute protein 
expression values

Relative protein 
expression values  

(Z-score & fold change)

Test set 1: post- 
processed 

MS/MS data

Test set 2: post- 
processed 

MS/MS data

Training set: 
post-processed 

MS/MS data

Test set: post- 
processed 

MS/MS data

Training set: 
peptide sequence 

features

Test set: 
peptide sequence 

features

Model for prediction of 
peptide MS 
detectability

1B. Testing for MS 
detectability

Figure 1 | APEX pipeline—overview. The protocol describes three different

calculations. (1A) Using training MS/MS data, a model is created to describe

peptide MS detectability. (1B) This model is then used to predict peptide MS

detectability for any test data file. (2) Using Oi-values (summed probabilities

of peptide MS detectability) and MS/MS data, we calculate APEX, an estimate

of absolute protein expression. (3) Two MS/MS data files can be statistically

compared calculating a Z-score. Fold-changes of expression levels are based

on APEX estimates.
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(see Step 10) and (ii) time for calculation of the model is within
desired time frame. In general, the larger the fraction of observed
versus nonobserved peptides in the dataset, the better is model
performance. This fraction seems more important than the actual
number of proteins (or peptides) contained in the training
dataset (see Supplementary Note online for details). However,
the larger the training dataset, the more time is required to build
a model.

We tested selection of the training dataset based on high
protein and/or peptide identification probabilities as well as
high-spectral counts per protein/per peptide. Alternatively,
training proteins could also be chosen based on their presence
in other experiments (e.g., in western blot data). We obtained
better models when filtering for high-protein identification
probability (e.g., 1.00) and high-spectral counts per protein
(e.g., 4200) than when filtering for high probabilities/
spectral counts per peptide. However, note that these cutoffs
are MS/MS dataset- and machine-dependent and should be
reevaluated for different experimental setups. Our cutoffs provide a guideline for experimentation; the Supplementary Note
online contains more detailed information.

For example, when creating a training file for a ThermoFinnigan LTQ-OrbiTrap, we analyzed yeast cellular lysate identifying
89 proteins of high-protein identification probability (pi ¼ 1.00) and with at least 200 total spectral counts per protein.
For these proteins, 9% (1,331) of the peptides were observed in the MS/MS experiment; 91% (13,279) of peptides were
not observed.

3| Digest the amino acid sequences for the proteins in silico into (tryptic) peptides, for example using Proteogest35 at
http://www.utoronto.ca/emililab/proteogest.htm/ Trypsin cleaves after Lys (K) or Arg (R) unless they are followed by Pro (P)
(Fig. 2b). In silico digestions usually account for one or two missed cleavages per peptide which strongly increase the number
and types of peptides per protein. In our example, we always include up to two missed cleavages. If only one or zero missed
cleavages are allowed, the model has to be rebuilt. For model building, it is sufficient to digest only the proteins in the training
dataset; however, we typically digest the whole proteome and then select the respective training proteins (see http://
www.marcottelab.org/APEX_Protocol/ for Perl scripts). The choice of the maximum allowed number of missed tryptic cleavages
should be the same for training, testing and application of APEX.

4| Describe sequence features (attributes) for all peptides. Attributes should include the peptide length (number of amino
acids) and the amino acid frequencies (relative and absolute). Attributes can also include the molecular weight, number of
unique theoretical peptides, hydrophobicity, solubility, solvent accessibility, etc. or features identified by Mallick et al.23 to
characterize proteotypic peptides. We collected all amino acid features from the AAindex (http://www.genome.jp/aaindex/).
Attributes can be numerical, continuous or categorical. Consistent with Mallick et al.’s work, we include both the sum and the
average values for any amino acid characteristic as a peptide feature.
m CRITICAL STEP The number and types of attributes included is important for model performance (see Supplementary Note
online and http://www.marcottelab.org/APEX_Protocol/). When testing the same training dataset but with different sets of peptide
attributes: (i) two attributes (length, molecular weight); (ii) 22 attributes (length, molecular weight and relative amino acid
frequencies); (iii) 58 attributes (length, molecular weight, relative and absolute amino acid frequencies, secondary structure, five
attributes identified by Mallick et al.23); and (iv) 66 attributes (as in (iii) plus four additional attributes).
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Peptide sequence features:

Post-processed MS/MS data:

• Protein identification probability

• Types (sequences) of 
  contributing (observed) peptides

• Total spectral count (repeat 
  peptide observations)

 

Fasta sequence

In silico (tryptic) digest

Amino acid properties

Peptides

>YAL001C TFC3
MVLTIYPDELVQIVSDKIASNKGKITLNQLWDI
SGKYFDLSDKKVKQFVLSCVILKKDIEVYCD
GAITTKNVTDIIGD...

Peptide sequence features

MS observation

WEKA input file format (.arff)

Observed 1
Not-observed 0
To be predicted ?

>YAL001C TFC3
SVTGRIKK
RELK
ELKFDK
FDKEK ...

SVTGRIKK 8 888.04 0...
RELK 4

6
544.63 1 1...

1...

2

ELKFDK 778.87 2
FDKEK ...

SVTGRIKK 8 888.04  0...   ?
RELK 4 544.63 1 1...   ?
ELKFDK 6 778.87 2 

2 

1... ?
FDKEK ...

@relation filename

@attribute LENGTH NUMERIC
@attribute MOLWEIGHT NUMERIC
...
@attribute peptideMSdetectability {1,0}

@data

8,888.04,2,0,...,?
4,544.63,1,1,...,?
6,778.87,2,1,...,?
...

> YAL001C TFC3 
Probability 1.00
Observed peptides
  LCTDTLPDILENRGNYK 1

1  VLVVSPKNPAIKIR
...

Total spectral count 5*

a

b

Figure 2 | Preparation of input files. We use two basic types of input data.

(a) Postprocessed MS/MS data from which information on the probability of

correct protein identification (pi), the types of contributing (observed)

peptides and the number of their MS/MS spectral observations is extracted.

A total of five MS/MS spectra map to the example protein, YAL001C.

(b) Sequence feature data calculated for in silico digested protein sequences

using known amino acid features. The feature vectors can be extended to any

length; the most important features are described in literature23,25. The

example protein YAL001C is described for a prediction of peptide MS

detectability; for its peptides the panels list the length, molecular weight and

two arbitrary features. *Total spectral count per protein.
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We observed improving performance from (i) to (iv), with the largest improvement between (i) and (ii). For both the final
model for the LCQ and the LTQ-OrbiTrap we use files with 66 peptide sequence attributes (iv). The attributes are listed in the
Supplementary Note online.

5| For each of the peptides assign ‘1’ if it has been observed in the selected proteomics data (Step 2) and ‘0’ if it has not been
observed. When using Peptide- and ProteinProphet output, observation of a peptide is marked as ‘Contributing_peptide¼‘‘Y’’’ in
the –prot.xml file.

6| Convert the peptide feature vectors including MS observation (1,0) into WEKA .arff file format (Fig. 2b, Supplementary
Note online) which lists all features (attributes) in the order in which they occur in the feature vector, as well as the feature
vectors in form of comma separated values. The file format does not contain peptide identifiers; they need to be stored
separately.

7| Create a model of peptide MS detectability using WEKA. The process requires a lot of computer memory (depending on the
size of the training set), thus we recommend allocating extra memory to WEKA when opening it or using the command line
options. Here, we describe the steps to be taken with WEKA Explorer Java user interface. To open WEKA and allocate 500 MB
memory, enter ‘java -Xmx512m -jar oyour directory here4/weka.jar’. Computing times quoted here are obtained allocating
1,800 MB of memory to WEKA with no other processes running.

8| In WEKA, load the .arff file in the ‘Preprocess’ tab (Fig. 3a) and then switch to ‘Classify’ (Fig. 3b). Select classifiers in the
‘Classifier - Choose’ option: first select CostSensitiveClassifier under ‘meta’ classifiers. Then, select in the popup window Bagging
under ‘meta’ classifiers. Click on the text bar listing Bagging and select RandomForest under ‘meta’ classifiers. Within the popup
window for the CostSensitiveClassifier, define a ‘costMatrix’. Cost-sensitive training is crucial as the training dataset is heavily
biased toward one class (e.g., here 91% of nonobserved peptides) and a cost matrix counteracts this bias by weighted use of the
training data. In our example, the cost matrix looks like:

0.00 0.91
0.09 0.00

The cost matrix can also be saved and uploaded in later uses. Specify 10 in the Cross-validation.
m CRITICAL STEP If no cost matrix is specified, model performance is very poor, in particular if there is a strong class bias in
training data (see Supplementary Note online, Table S2). In fact, we recommend reversing or leaving-out the cost matrix as a
control experiment: decreasing model performance (F-measure) compared to correct use of a cost matrix verifies setup of the
calculations. In contrast, classifiers other than Bagging and RandomForests can also perform well, as discussed in the original APEX
publication25.

9| Start calculations by clicking on ‘Start’. Depending on computer power and dataset size model building and cross-validation
takes several minutes.

10| The output file contains information on the success of the training (Fig. 3c), for example via the F-measure which is the
weighted harmonic mean of precision and recall [2 � precision � recall/(precision + recall)] of class prediction. The closer the
F-measure is to 1, the larger are precision and recall and the better is the prediction. In many training sets, most peptides are
not observed; prediction of peptide observation is harder than prediction of nonobservation. Therefore, we recommend paying
special attention to the F-measure (as well as precision, recall) of observed peptides (class 1); the larger this F-measure, the
better is the model. We recommend an F-measure of 40.5 (empirical evidence).

In the example (Supplementary Note online), observed peptides (class 1) are predicted with an F-measure of 0.61, i.e., with
precision and recall of 0.59 and 0.63, respectively. Nonobserved peptides (class 0) are predicted with much higher precision
(0.96) and recall (0.96), and the F-measure is 0.96.

11| Once the training is over and a quality model has been created, save the model as a .model file by right-clicking in the
‘Results list’ section and selecting ‘Save model’.
’ PAUSE POINT The saved model can be used at any later time and in different experiments.

Training and testing of a model for prediction of peptide and protein MS detectability: testing
12| Postprocess MS/MS raw data as in Step 1 and Figure 2a. This time include all proteins of interest, e.g., with o5% false
discovery rate.

13| Digest the amino acid sequences for all proteins of interest (above) in silico into (tryptic) peptides, using the same
parameters as in Step 3, i.e., allow for the same number of missed cleavages. This file easily becomes large; a yeast genome
with B6,000 genes in silico digests into B921,000 peptides (r2 missed cleavages).
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14| Analyze all peptides for their
sequence features using the same
attributes as in Step 4.

15| Convert peptide feature vectors
into WEKA .arff file format similar to
Step 6. At the end of each feature
vector, place a question mark ‘?’ instead
of the ‘1’ or ‘0’ describing peptide
observation (Fig. 2b).

16| Predict probability of observation
(peptide MS detectability) using WEKA.
In the ‘Preprocess’ tab, load the .arff file
created in Step 4. In the ‘Classify’ tab,
load the model created in ‘Training and
testing of a model for prediction of
peptide and protein MS detectability:
training’ by right-clicking within the
‘Result list’ section and choosing ‘Load
model’. If you do not yet have a model
available, create it according to ‘Train-
ing and testing of a model for prediction
of peptide and protein MS detectability:
training’. Select CostSensitiveClassifier,
Bagging and Random Forests as
classifiers and defined a cost matrix as
described in Step 8. Do not select
Cross-validation. Select the ‘Supplied
test set’ option and upload the test .arff
file. Under ‘More Options’, unselect to
output the model and select to display
the output predictions.

17| Start calculations by clicking on
‘Start’. Depending on computer power
and dataset size the calculations can
take several minutes.

18| Cut and paste the output file into a
text file or save it by right-clicking in
the ‘Result list’ section and selecting
‘Save result buffer ’. The second but last column of the output file provides the probability of peptide observation (Fig. 3d), i.e.,
the class 1 probability, and this value is used for further calculations. Note that while peptide MS detectability is binary during
training (observed/non-observed), it is continuous when calculating Oi (class 1 probability: value between 0 and 1).

19| Match the peptide identities to probabilities of peptide observation of the WEKA output file. Sum over the probabilities for
all peptides mapping to a protein; this sum is the Oi-value of the protein, i.e., the expected number of observed peptides.
Store these Oi-values in a data file.

Once calculated for an organism for a particular experimental setup, the Oi-values can be reused for any number of MS/MS
analyses of the same proteins. See http://www.marcottelab.org/APEX_Protocol/ for Oi-values for the entire proteomes of E. coli,
yeast and human for analysis on an LCQ and an LTQ-OrbiTrap using a given protocol, mass range, etc. (provided on the website).
’ PAUSE POINT Oi-values can be used at any later time and in different experiments involving the same proteins.

Estimation of absolute protein expression levels
20| Postprocess MS/MS raw data as described in Step 1. For each protein identified in the MS/MS experiment, we need the
probability of correct identification pi and the total number of observed MS/MS spectra ni.
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Figure 3 | Use of WEKA. The screenshots illustrate how use of the WEKA Explorer can look like in

practice. Red circles mark steps described in this protocol. (a) Uploading the .arff file. (b) Choosing the

classifier and defining cost matrix and other parameters. (c) Training output. (d) Prediction output.
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21| Calculate Oi-values for each protein as described in Steps 12–19, i.e., the expected number of unique peptides per protein
corrected by the differential peptide MS detectability.

22| Estimate the total number of protein molecules per cell C. A total of 5 � 107 molecules/cell28 for yeast and 2–3 � 106

molecules/cell for E. coli36,37 have been suggested. This total number of molecules will be split among the proteins identified in
the MS experiment. Because the number of proteins identified can vary between different experiments, an alternative way to
estimate C is to multiply the number of proteins identified by an estimate of the average number of molecules per protein.
For yeast, an average of 2,000 to 10,000 molecules per protein is expected25,26,28, for E. coli B1,000 to 4,000
(refs. 25,36,37). In our example experiment, 2,033 proteins were identified with o5% false discovery rate on the LTQ-OrbiTrap,
thus we estimate C ¼ 2,033 � 4,000 E 8.1 � 106. Alternatively, if not cellular lysates but a protein mixture is used, C can be
estimated using the total concentration of proteins in the sample. Finally, C can also be set to a constant (e.g., 1) which
results in APEX values of proteins relative to each other in the sample. The protein abundances from the last estimate cannot be
compared between samples.

23| Calculate APEX protein absolute protein expression values using equation (1).

APEXi ¼
ni � pi

Oi �
PNo: of observed proteins

k¼1

nk � pk = Ok

� C ð1Þ

In equation (1), ni is the total spectral count for protein i (total number of MS/MS spectra attributable to protein i), Oi is the
expected unique peptide count for protein i (sum of peptide MS detectabilities for a given protein), and pi is the protein
identification probability. Values for ni and pi are extracted from postprocessed MS/MS data; Oi is computed as
described earlier.

As an overall control for correct APEX calculations, we recommend that the user conducts a spike-in experiment as described
in the original publication25. In such an experiment, a mixture of proteins of known abundances is spiked into cellular lysate
and APEX is used to estimate protein concentrations in the mixture.

Estimation of relative protein expression (comparison of two samples)
24| Postprocess MS/MS raw data of both samples as described in Step 1. For each protein identified in the MS/MS experiment,
we need the probability of correct identification pi and the total number of observed MS/MS spectra ni.

25| Calculate the total number of observed MS/MS spectra (total spectral counts) N for each sample. This sum includes only
peptides of confident identification (above threshold). Convert the spectral counts ni into fractions fi ¼ ni/N.

26| Calculate for each protein the overall proportion fi,0 ¼ (ni,1 + ni,2)/(N1 + N2). The proportion fi,0 is the null expectation in
the event that protein i is present at the same level in both samples. The calculation can be done for proteins which are
confidently identified in both samples, and for proteins which are only identified in one sample but assumed to be absent in the
other sample.

27| Calculate APEX-based protein abundance estimates as described in Steps 20–23. The expression fold change between the
two samples 1 and 2 can then be expressed as the ratio APEXi,1/APEXi,2. If a protein is absent in one sample, its spectral count
is ni ¼ 0 and an APEX-based fold change cannot be calculated.

28| Calculate for each protein a Z-score of differential expression according to

Z ¼ fi;1 � fi;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fi;0ð1 � fi;0Þ=N1 + fi;0ð1 � fi;0Þ=N2

p ð2Þ

where N1 and N2 are the total spectral counts in samples 1 and 2, fi,0 is the overall proportion of a protein’s spectral counts
(Step 26), and fi,1 and fi,2 are the proportions of a protein’s spectral counts in sample 1 and 2, respectively (Step 25).

Equation (2) is based on a similar approach applied in SAGE mRNA expression profiling38–40. Two-sided P values
require |Z| 4 1.96 for P value o 0.05; |Z| 4 2.58 for P value o 0.01. Proteins of high abundance in both samples can
be significantly differentially expressed even if the actual expression fold change is small. Thus we recommend examining
both Z-scores and expression fold changes for each protein. The Supplementary Note online and the website at http://
www.marcottelab.org/APEX_Protocol/ contain an example of differential protein expression analysis (yeast grown in minimal
versus rich medium).
? TROUBLESHOOTING
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� TIMING
Training and testing: a few minutes to several hours once scripts and data files are setup.
Estimation of absolute and relative expression values: minutes, once scripts and data files are set up.

? TROUBLESHOOTING
WEKA crashes during training or testing
WEKA explorer uses a lot of memory, especially when handling large files. If WEKA crashes during model building
(training), consider allocating more memory or reducing dataset size by filtering the training data more stringently
(see m CRITICAL STEP, Step 2).

When applying the model to predict peptide MS detectability, we found that for a test file with 100,000 lines, at least
1,500 MB memory is required (allocated in Step 7). If the test file contains more than 100,000 lines, we recommend splitting the
file into smaller .arff files, assigning more memory when starting WEKA (Step 7) and/or using the WEKA command line interface.
The peptide file for the whole yeast genome needs to be split into B10 separate .arff files with each 100,000 lines or fewer.
Be sure to have unselected ‘Output model’ under ‘More options’ to save the memory required to output the model.

An error message appears when uploading the .arff training or testing file
Thoroughly check the .arff file format. Check that the number of attributes listed in the header is the same as the number of
attributes (features) in the data rows. Ensure that all rows with data entries have the same number of attributes listed. If
nothing helps, try uploading our example .arff files and work from there.

Training results in a poor model, e.g., the F-measure for observed peptides is {0.5
Check that the correct cost matrix is used, as described in Step 8. Check quality of the training data (CRITICAL STEP, Step 2).
Consider reducing your training set to fewer proteins, possibly hand-select them for their quality of peptide identification.
Check that peptides classified as observed have high-peptide identification scores (or probabilities). Check that proteins in the
training set are not degenerate, i.e., that several proteins of different names do not map to the same group of peptides.
Check that peptides in the training set are not degenerate, i.e., that their observation is not mapped to several proteins of
different names. (When selecting our training data, we exclude all degenerate proteins and peptides.) Ensure that you use WEKA
correctly by training on one of the files provided at http://www.marcottelab.org/APEX_Protocol/ and comparing your training
outputs with our result files.

Check types of peptide attributes (CRITICAL STEP, Step 4). Modify the kinds and number of attributes used to describe peptide
sequences. Not all 66 attributes used in our example set are equally important for training. Performing different tests in the
‘Attribute selection’ section in WEKA (Ranker-PrincipalComponents, Ranker-InfoGain and BestFirst-CfsSubset), we identified
attributes describing peptide length, the iso-electric point, hydrophobicity, solvent access, solubility, volume, secondary struc-
ture as most important, while amongst amino acid frequencies the number of C, R and K were top-ranked (see http://
www.marcottelab.org/APEX_Protocol/). Consider adding attributes listed by Mallick et al.23 as important for your experimental
setup (if not yet included).

ANTICIPATED RESULTS
In our example analysis, we train prediction of peptide MS detectability on a set of 89 yeast proteins well-observed in an LTQ-
OrbiTrap MS/MS experiment and then estimate Oi-values for all proteins in the yeast genome (Supplementary Note online and
http://www.marcottelab.org/APEX_Protocol/). As an example, the TFC3 protein (YAL001C) has B500 theoretical peptides from a
tryptic digest with r2 missed cleavages. Only four different peptides are observed in the experiment with five spectral counts.
Given sequence properties of all peptides, TFC3’s Oi is 60.24, i.e., about 60 peptides are expected for this protein to be observed
in an LC-MS/MS analysis. With an average of 4,000 molecules/protein and 2,033 proteins detected in total, the APEX value for
TFC3 is estimated to 116 molecules/cell.

When establishing the APEX protocol we encourage the reader to use the Perl scripts and sample data files provided on our
website as a control for correct setup. Further, probabilities of peptide MS detectability may also be compared to predictions
by Mallick et al.23 and by the Peptide Detectability Predictor at http://darwin.informatics.indiana.edu/applications/
PeptideDetectabilityPredictor/. Other tests of the quality of APEX estimates are described in the original publication25.

We provide this protocol not only for easy calculation of absolute and relative protein expression values but also to encourage
the reader to experiment and optimize the method to suit his or her needs. In future work, several refinements are possible.
For example, when training for peptide MS detectability, actual peptide identification probabilities could be taken into
account, converting the binary classification (observed, nonobserved) into a continuous value. Peptide charge states and prior
modifications (e.g., on Cysteine residues) may also be considered. Further, the user may choose to allow only r1 missed
cleavages instead of 2.

APEX will also be applied in a free software tool which is being developed by John Braisted and colleagues at the J. Craig
Venter Institute (JCVI), Rockville, MD (J.C. Braisted, personal communication).
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Note: Supplementary information is available via the HTML version of this article.
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